Jó hír annak, aki igazán hatékony napelemet szeretne – magyar kutatók fejlesztése

A BME szakértői más intézmények munkatársaival együtt egy olyan új anyagcsaládot vizsgáltak, amely forradalmasíthatja a napelemeket.

Napelem rendszerrel vehetjük fel a harcot az elszálló villanyárakkal szemben. Kalkuláljon itt ingyenesen (x)

A napelemek az elmúlt évtizedekben elképesztő fejlődésen estek át, de a kutatók szerint a technológiában még mindig rengeteg kiaknázatlan lehetőség rejlik. A fotovoltaikus megoldások az élet egyre több területén jelennek meg, mérséklik az emissziót, illetve csökkentik az villanyszámlákat. Napjainkban, az energiaválság idején a napelemek különösen nagy jelentőséggel bírnak. A technológia az elkövetkező időszakban bizonyosan még fejlettebbé válik majd, az ipar például komoly erőforrásokat fordít arra, hogy megtalálja a hagyományos, szilícium alapú napelemes anyagok hatékonyabb alternatíváit. Ilyen ígéretes jelölt a nemrégiben felfedezett, úgynevezett metilammónium-ólom-halid-perovszkit család, amely rendkívüli fotovoltaikus tulajdonságokkal bír, könnyű és olcsón előállítható – írja a HVG. Míg a hagyományos anyagok tipikus hatásfoka 15 százalék körül mozog, addig az új anyagcsalád használatával laboratóriumi körülmények között már 30 százalékos hatásfokot is elértek. A szakértők abban bíznak, hogy az arány tovább növelhető, a nem szilícium alapú anyag napelemes felhasználása pedig további anyagok vizsgálatára sarkallja a kutatókat.

Ezt a különleges, új családot vizsgálták a közelmúltban magyar kutatók részvételével. A Budapesti Műszaki és Gazdaságtudományi Egyetem (BME) munkatársai szerint a napelem-alapanyagok a fény energiáját úgy hasznosítják, hogy a bejövő fotonok hatására bennünk elektronlyuk-párok jönnek létre, amelyek aztán áramot termelnek. A napelem belsejében gerjesztett töltéshordozó párok mennyisége, illetve élettartama rendkívül fontos a felhasználhatóság szempontjából, rekombináció esetén a gerjesztett elektronlyuk-párok például megsemmisülnek. A félvezető anyagban a rekombináció előtt a réteget elhagyó töltéshordozók révén termelődik energia, az új típusú félvezetők rekombinációs idejének vizsgálatából ezért jobban megismerhető napelemként való felhasználhatóságuk.

A BME munkatársai új tanulmányukban ezért a rekombinációs időt, valamint a gerjesztett töltéshordozó mennyiséget elemezték. A publikáció vezető szerzője Bojtor András, az egyetem doktorandusza, aki tanulmányai mellett a Semilab Félvezető Fizikai Laboratórium Zrt.-nél dolgozik. A vizsgálatot Forró László professzorral végezte a Lausanne-i Svájci Szövetségi Műszaki Egyetemen.

A napból négyzetméterenként megközelítőleg 1 kilowatt fényteljesítmény érkezik, hazánkban pedig átlagosan 2000 az éves napsütéses órák száma. Átlagos fekvésnél és tájolásnál úgy lehet számolni, mintha a napelemeket 1000 órán át derékszögben sütné a nap. Évi 2500 kilowattóra fogyasztás mellett tehát a rendszernek 2500 wattos csúcsteljesítménnyel kell bírnia. A jelenlegi technológia hatásfokát figyelembe véve ehhez 17 négyzetméternyi napelem szükséges, az új megoldásoknak köszönhetően a méret ugyanakkor tovább csökkenhet. A technológiával emellett olyan fotovoltaikus rendszereket is létrehozhatnának, melyek autók tetejére telepíthetőek. Ezek segítségével az elektromos járművek magukat tölthetnék, ami tovább mérsékelné a fenntartási költséget és az emissziót. Mivel egy átlagos személyautón 4 négyzetméternyi napelem fér el, 10 kilowattóra energia pedig megközelítőleg 100 kilométer megtételéhez elég. Amennyiben kellően nagy a napelemes rendszer hatásfoka, az autó minden nap akár 100 kilométert is megtehetne „saját” energiával.

A BME és az Eötvös Kutatási Hálózat Wigner Fizikai Kutatóközpont munkatársai a Lausanne-i Svájci Szövetségi Műszaki Egyetemen és az amerikai Notre Dame-i Egyetem szintén többnyire magyar kutatóival vizsgálták a metilammónium-ólom-halid-perovszkitekben a keletkező töltéshordozók élettartamát és azok számát. A vizsgálat során 4 kelvinre hűtötték a család három eltérő anyagát, majd a hőmérséklet emelésével, 300 kelvinig figyelték a rekombinációs folyamatot. A szakértők azt dokumentálták, hogy az anyagok szerkezeti átalakulásai miként hatnak a napelem-hatásfokra, amiből meg tudták állapítani, hogy milyen további elemzések szükségesek.

Összehasonlították a jódot, brómot és klórt tartalmazó mintát, megfigyelték a minta gyors és lassú hűtése során jelentkező különbséget, illetve három, eltérő mintakészítési módszerrel létrehozott metilammónium-ólom-bromid kristálynál a morfológia rekombinációra gyakorolt hatását. „Nagyon izgatottak vagyunk, hogy a kutatásaink révén esetleg a napelem anyagok újabb generációja előtt nyílhat meg az út, egyben lelkesen folytatjuk a további kutatásokat ebben az irányban” – mondta Simon Ferenc, a BME egyetemi tanára.

Ajánlott tartalom

Tudatos választás a jövőben: hogyan lehet egyszerre kényelmes és energiatakarékos egy otthon?

Az otthon kényelme és az energiatudatosság mára egymást erősítő fogalmak lették. A modern háztartásokban egyre fontosabb, hogy a technológia ne csak komfortot biztosítson, hanem hatékonyan bánjon az energiával is. A fűtés, a hűtés, a világítás és a háztartási készülékek mind olyan területek, ahol okos döntésekkel jelentős megtakarítás érhető el. Az alábbi öt tipp abban segít, hogyan teremthető olyan otthon, amely egész évben kellemes hőérzetet nyújt, miközben tudatosan használja az energiát.